1. The number -4.2 is rational. Which shows that number expressed as the ratio of two integers?
 A. $-\frac{4}{2}$
 B. $-\frac{12}{5}$
 C. $-\frac{21}{5}$
 D. $-\frac{40}{2}$

2. Which symbol makes this sentence true?
 $\pi \bigcirc \sqrt{7}$
 A. $>$
 B. $<$
 C. $=$
 D. $+$

3. Oceans cover approximately 70.8% of Earth's surface. Which shows 70.8% expressed as a decimal?
 A. 0.0708
 B. 0.708
 C. 0.78
 D. 7.08

4. Consider the three irrational numbers below.
 $3.24037..., \pi, \sqrt{12}$
 Which lists these numbers in order from greatest to least?
 A. $\pi, \sqrt{12}, 3.24037...$
 B. $\pi, 3.24037..., \sqrt{12}$
 C. $3.24037..., \pi, \sqrt{12}$
 D. $\sqrt{12}, 3.24037..., \pi$

5. Which of the following is a rational number that can be written as a decimal in which one or more nonzero digits repeat?
 A. $\sqrt{16}$
 B. $\sqrt{5}$
 C. $\frac{5}{8}$
 D. $\frac{5}{9}$

6. Which best represents the value of $2\sqrt{45}$?
 A. 13.6
 B. 13.4
 C. 9.0
 D. 8.7
Coached Example

The area of a square is 67 square meters. Find the exact length, in meters, of one side of the square. Then graph that value on a number line.

The area, \(A \), of a square is found using the formula \(A = s^2 \), where \(s \) shows the length of one side.

So, the length of one side, \(s \), can be found by taking the square root of _________.

The exact length of each side of the square is \(\sqrt{______} \) meters.

To graph that number on a number line, first estimate its value as a decimal.

67 lies between the perfect squares 64 and _________.

\(\sqrt{64} = _________. \), and the square root of the other perfect square is _________.

So, \(\sqrt{67} \) lies between the whole numbers _____ and _____, but is closer to _____.

Use guess and check to estimate its value to the nearest tenth.

Try 8.1:

\[8.1^2 = 8.1 \cdot 8.1 = _________ \quad \rightarrow \quad \text{close, but _______ than 67.} \]

Try 8.2:

\[8.2^2 = 8.2 \cdot 8.2 = _________ \quad \rightarrow \quad \text{close, and _______ than 67.} \]

Which is closer to 67: \(8.1^2 \) or \(8.2^2 \)? _________

So, \(\sqrt{67} \) is between 8.1 and 8.2, but is closer to _________.

Graph \(\sqrt{67} \) on the number line below.

\[\begin{array}{cccccccc}
8 & 8.1 & 8.2 & 8.3 & 8.4 & 8.5 & 8.6 & 8.7 & 8.8 & 8.9 & 9
\end{array} \]

The exact length of one side of the square is _____ meters.

The number line above shows the approximate decimal value.
Domain 1: Cumulative Assessment for Lessons 1–4

1. The number \(-4.2\) is rational. Which shows that number expressed as the ratio of two integers?
 A. \(-\frac{4}{2}\)
 B. \(-\frac{12}{5}\)
 C. \(-\frac{21}{5}\)
 D. \(-\frac{40}{2}\)

2. Which symbol makes this sentence true?
 \[\pi \bigcirc \sqrt{7} \]
 A. >
 B. <
 C. =
 D. +

3. Oceans cover approximately 70.8% of Earth's surface. Which shows 70.8% expressed as a decimal?
 A. 0.0708
 B. 0.708
 C. 0.78
 D. 7.08

4. Consider the three irrational numbers below.
 3.24037..., \(\pi\), \(\sqrt{12}\)
 Which lists these numbers in order from greatest to least?
 A. \(\pi\), \(\sqrt{12}\), 3.24037...
 B. \(\pi\), 3.24037..., \(\sqrt{12}\)
 C. 3.24037..., \(\pi\), \(\sqrt{12}\)
 D. \(\sqrt{12}\), 3.24037..., \(\pi\)

5. Which of the following is a rational number that can be written as a decimal in which one or more nonzero digits repeat?
 A. \(\sqrt{16}\) → non rep.
 B. \(\sqrt{5}\) → 2.236... non-ter.
 C. \(\frac{5}{8}\) = .625
 D. \(\frac{5}{9}\) = .55...

6. Which best represents the value of \(2\sqrt{45}\)?
 A. 13.6
 B. 13.4
 C. 9.0
 D. 8.7
 \[\boxed{13.4} \]
Coached Example

The area of a square is 67 square meters. Find the exact length, in meters, of one side of the square. Then graph that value on a number line.

The area, \(A \), of a square is found using the formula \(A = s^2 \), where \(s \) shows the length of one side.

So, the length of one side, \(s \), can be found by taking the square root of \(67 \).

The exact length of each side of the square is \(\sqrt{67} \) meters.

To graph that number on a number line, first estimate its value as a decimal.

67 lies between the perfect squares 64 and 81.

\[\sqrt{64} = 8 \]

and the square root of the other perfect square is \(9 \).

So, \(\sqrt{67} \) lies between the whole numbers 8 and 9, but is closer to 8.

Use guess and check to estimate its value to the nearest tenth.

Try 8.1:

\[8.1^2 = 8.1 \cdot 8.1 = 65.61 \] close, but less than 67.

Try 8.2:

\[8.2^2 = 8.2 \cdot 8.2 = 67.24 \] closer to 67

Which is closer to 67: 8.1² or 8.2²? 8.2

So, \(\sqrt{67} \) is between 8.1 and 8.2, but is closer to 8.2.

Graph \(\sqrt{67} \) on the number line below.

\[\sqrt{67} \]

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

The exact length of one side of the square is \(\sqrt{67} \) meters.

The number line above shows the approximate decimal value.